Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/974 -
❓В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)
Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.
🔍Активное обучение: — Фокусируется на выборке самых информативных примеров из неразмеченного пула. — Эти выбранные примеры отправляются эксперту для разметки. — Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.
🔍Полунаблюдаемое обучение: — Использует все доступные неразмеченные данные без дополнительной ручной разметки. — Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение. — Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.
✅Комбинация подходов: Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.
❓В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)
Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.
🔍Активное обучение: — Фокусируется на выборке самых информативных примеров из неразмеченного пула. — Эти выбранные примеры отправляются эксперту для разметки. — Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.
🔍Полунаблюдаемое обучение: — Использует все доступные неразмеченные данные без дополнительной ручной разметки. — Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение. — Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.
✅Комбинация подходов: Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.
Spiking bond yields driving sharp losses in tech stocks
A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year.
A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.
Библиотека собеса по Data Science | вопросы с собеседований from hk